

ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 3-TOTAL DIFFERENCE CORDIAL LABELING OF SOME GRAPHS R. Ponraj^{*1}, S. Yesu Doss Philip² & R. Kala³

*¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412. ²Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli-627012

³Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti Tirunelveli-627012

ABSTRACT

We introduce a new graph labeling technique called k- total difference cordial labeling .Let $f:V(G) \rightarrow \{0,1,2,..,k-1\}$ be a map where $k \in N$ and k>1.For each edge uv assign the label |f(u)-f(v)|, f is called k-total difference cordial labeling of G if $|t_{df}(i)-t_{df}(j)| \leq 1$, $i,j \in \{0,1,2,...,k-1\}$ where $t_{df}(x)$ denote the total number of vertices and the edges labeled with x. A Graph with a k- total difference cordial labeling is called k- total difference cordial graph. We investigate k-total difference cordial labeling of some graphs and study the 3-total difference cordial labeling behavior of Fan ,Sun flower, $T_nOK_1,S(L_n),S(K_{1,n}),S(P_nOK_1)$.

Keywords: Path, Cycle, Fan, Corona of graphs.

I. INTRODUCTION

Consider All graph in this paper are finite, simple and undirected. Cahit[1] introduced the notion of cordial labeling of graphs.. Recently Ponraj[4 has been introduced the concept of k-total difference cordial graph . In [4] we prove that every graph is a subgraph of a connected k-total difference cordial graphs and investigate the k- total difference cordial labeling of some graph and 3- total difference cordial labeling behavior of path cycle, star, etc .Also we investigate the 4- total difference cordial labeling of several graphs in[5]. In this paper investigate 3-total difference cordial labeling of some graphs like Fan, Sun flower, $T_n \Theta K_1$, $S(L_n)$, $S(K_{1,n})$, $S(P_n \Theta K_1)$. Terms not in here from [2,3]

II. K-TOTAL DIFFERENCE CORDIAL LABELING

Definition 2.1

Let G be a graph and $f:V(G) \rightarrow \{0,1,2,\ldots,k-1\}$ be a map where $k \in N$ and k>1. For each edge uv assign the label |f(u)-f(v)|, f is called k-total difference cordial labeling of G if $|t_{df}(i)-t_{df}(j)| \leq 1$, $i,j \in \{0,1,2,\ldots,k-1\}$ where $t_{df}(x)$ denote the total number of vertices and the edges labeled with x. A Graph with admits a k- total difference cordial labeling is called k- total difference cordial graph.

III. PRELIMINARIES

Definition 3.1

The join of two graphs G_1 and G_2 is the graph G_{1+} G_2 with $V(G_{1+}$ $G_2)=V(G_1)U(G_2)$, $E(G_{1+}$ $G_2)=E(G_1)U(G_1)U(G_2)$, $E(G_1)U(G_2)$, $E(G_1)U(G_2)$.

The graph $F_n = P_n + K_1$ is called the Fan.

Definition 3.2

The corona of G_1 with G_2,G_{12} is the graph obtained by taking one copy of G_2 and p_1 copies of G_2 and joining the ith vertex of G_1 with an edge to every vertex in the ith copy of G_2 .

Definition 3.3

The sunflower graph S_n is obtained from the wheel $W_n = C_n + K_1$ with central vertex v and the cycle C_n : $v_1v_2....v_nv_1$ and new vertices $w_1w_2....w_n$ where w_i is joined by vertices $v_i, v_{i+1} \pmod{n}$.

ISSN 2348 - 8034 Impact Factor- 5.070

Definition 3.4

Let P_n be the path $u_1 u_2 \dots u_n$. The Triangular snake T_n is obtained from P_n with $V(T_n) = V(P_n) U \{ v_1 v_2 \dots v_{n-1} \}$ and $E(T_n) = E(P_n) U \{ u_i v_i, u_{i+1} v_i : 1 \le i \le n-1 \}$.

Definition 3.5.

An edge x = uv of G is said to be subdivided if it is replaced by the edges uw and wv where w is a vertex not in V (G). If every edge of G is subdivided, the resulting graph is called the subdivision graph S(G).

Theorem 3.6[4]. If G is a (p, q) graph. Then G is a subgraph of c connected k-total different cordial graph.

Theorem 3.7 [4]. If $n \equiv 0 \pmod{k}$ then the star $K_{1,n}$ is k-total difference cordial.

Theorem 3.8[4].

The path P_n is 3-total difference cordial iff $\ n \neq 2$

Theorem 3.9[4]. The bistar $B_{n,n}$ is 3-total different cordial iff $n \equiv 1, 2 \pmod{3}$.

Theorem 3.10[4]. The complete bipartite graph $K_{2,n}$ is 3-total difference cordial.

Theorem 3.11[4]. All combs are 3-total difference cordial.

Theorem 3.12[4]. All Wheels are 3-total difference cordial.

Theorem 3.13[4]. Helms H_n is 3-total difference cordial.

Theorem 3.14[4]. Any star is $K_{1,n}$ 3-total difference cordial.

Theorem 3.15[4]. AC_n is 3-Total difference cordial for all $n \ge 3$

Theorem 3.16[4]. $C_4(m)$ is 3-total difference cordial for all even values of m.

Theorem 3.17[4]. The subdivision of bistar $B_{n,n}$, $S(B_{n,n})$ is 3-total different cordial for all n.

Theorem 3.18[4]. $P_n \odot 2K_1$ is 3-total difference cordial for all n

IV. MAIN RESULTS

Theorem 4.1 The Fan F_n is 3-total difference cordial iff $n \ge 3$.

(C)Global Journal Of Engineering Science And Researches

RESEARCHERID

[Ponraj, 6(5): May 2019] DOI- 10.5281/zenodo.2677915

ISSN 2348 - 8034 Impact Factor- 5.070

Proof:

Let $F_n = P_n + K_1$ and P_n be the path $u_1 u_2 \dots u_n$, $V(K_1) = \{u\}$.

Case (1) n=1 $F_1 \approx P_2$, proof follows from [3.8].

Case (2) n=2 Suppose f is a 3-total difference cordial labeling of F_2 . Then $t_{df}(0) = t_{df}(1) = t_{df}(2) = 2$. Assume $f(u_1) = 2$. Clearly either $f(u_2) = 0$ or f(u) = 0.

Subcase (1) f(u) = 0 and $f(u_2) = 0$ $t_{df}(1)=0$, a contradiction

Subcase (2) f(u) = 0 and $f(u_2) = 1$ $t_{df}(1)=3$, a contradiction

Subcase (3) f(u) = 0 and $f(u_2) = 2$ $t_{df}(1)=0$, a contradiction

Subcase (4) f(u) = 1 and $f(u_2) = 0$ $t_{df}(1)=3$, a contradiction

Subcase (5) f(u) = 1, $f(u_1) = 2$ and $f(u_2) =$, $t_{df}(1)=3$, a contradiction

Subcase (6) f(u) = 1, $f(u_1) = 2$ and $f(u_2) = 2$ $t_{df}(1)=3$, a contradiction

Case (3) n is odd and $n \ge 3$ Assign the label 0 to the vertex u,We now move to the path vertices. Assign the label 2 to the vertices $u_1 u_2 \dots u_n$ and assign the label 1 to the vertices $u_{(n+3)/2}, u_{(n+5)/2}, \dots, u_n$. Finally assign the label 0 to the vertex $u_{(n+1)/2}$

Case (4) n is even and n > 2In this case assign the label 2 to the vertex u, We now move to the path vertices. Assign the label 2 to the vertices u_1 u_2 $u_{n/2}$ and assign the label 1 to the vertices $u_{(n+1)/2}$, $u_{(n+2)/2}$,...., u_{n-1} . Finally assign the label 0 to the last path vertex u_n .

Since $t_{df}(0) = t_{df}(1) = t_{df}(2) = n$, f is a 3-total difference cordial labeling.

Theorem 4.2

If $n \equiv 0,1 \pmod{3}$ then the sunflower graph is 3-total difference cordial.

Proof:

Assign the label 1 to the central vertex v.Next we assign the label 2 to the all rim vertices v_1, v_2, \ldots, v_n of the wheel. We now consider w_1, w_2, \ldots, w_n .

Case 1: $n \equiv 0 \pmod{3}$

Let n = 3r, ϵ N.Assign the label 0 to the vertices w_1, w_2, \ldots, w_r . Next assign the label 1 to the next vertices $w_{r+1}, w_{r+2}, \ldots, w_{2r}$. Finally assign the label 2 to the vertices $w_{2r+1}, w_{2r+2}, \ldots, w_{3r}$.

Case 2: $n \equiv 1 \pmod{3}$

ISSN 2348 - 8034 Impact Factor- 5.070

Let n = 3r+1, $r \in N$. In this case assign the label 0 to the vertices w_1, w_2, \ldots, w_r , w_{r+1} . Next assign the label 1 to the next vertices $w_{r+2}, w_{r+3}, \ldots, w_{2r}$. Finally assign the label 2 to the vertices $w_{2r+1}, w_{2r+2}, \ldots, w_{3r+1}$. The table 1 shows that this labeling is 3-total difference cordial labels.

Table 1				
Values of n	t _{df} (0)	t _{df} (1)	t _{df} (2)	
$n \equiv 0 \pmod{3}$	6r	бr	6r+1	
$n \equiv 1 \pmod{3}$	6r+3	6r+2	6r+2	

Theorem 4.3

The corona of T_n with K_1 , T_nOK_1 is 3-total difference cordial for all even n.

Proof:

Let $V(T_nOK_1) = V(T_n) \cup \{x_i : 1 \le i \le n-1\} \cup \{y_i : 1 \le i \le n\}$ and $E(T_nOK_1) = E(T_n) \cup \{v_i x_i : 1 \le i \le n-1\} \cup \{u_i y_i : 1 \le i \le n\}$. Assign the label 2 to the all path vertices u_1, u_2, \ldots, u_n . Next assign the label 0 to the vertices $v_1, v_2, \ldots, v_{(n-2)/2}$. We now assign the label 2 to the vertices $v_{n/2}, v_{(n+2)/2}, \ldots, v_{n-1}$. Then assign the label 1 to the $x_1, x_2, \ldots, x_{n-2/2}$ vertices assign the label 2 to the vertices $x_{n/2}, x_{(n+2)/2}, \ldots, x_{n-1}$. Finally assign the label 1 to the all y_1, y_2, \ldots, y_n vertices. Since $t_{df}(0) = t_{df}(1) = t_{df}(2) = 9n-6/3$, f is a 3-total difference cordial labeling.

Theorem 4.4

S(L_n) is a 3-total difference cordial labeling

Proof:

Let $V(L_n) = \{u_i, v_i \ (1 \le i \le n)\}$ and $E(L_n) = \{u_i v_i : (1 \le i \le n)\} U \ \{u_i u_{i+1}, v_i v_{i+1} \ (1 \le i \le n-1)\}$. Let x_i be the vertex which subdivided the edges $u_i u_{i+1}, v_i v_{i+1} \ (1 \le i \le n-1)$

Case (1) n is even n > 2

We assign the label 2 to the vertices u_1, u_2, \ldots, u_n and assign the label 1 to the vertices v_1, v_2, \ldots, v_n . Next we assign the label 0 to the vertices $y_1, y_2, \ldots, y_{n/2}$. and $z_1, z_2, \ldots, z_{n/2}$ then assign the label 2 to the vertices $y_{(n+2)/2}, y_{(n+4)/2}, \ldots, y_n$ and $z_{(n+2)/2}, z_{(n+4)/2}, \ldots, z_n$. Next we assign the label 0 to the vertices x_1, x_2, \ldots, x_n .

Case (2) n is odd n > 3

Assign the label to the vertices u_i , v_i $(1 \le i \le n)$ as in case (1) .Next we assign the label 0 to the vertices $y_1, y_2, \ldots, y_{(n-1)/2}$. Next we assign the label 2 to the vertices $y_{(n+1)/2}, y_{(n+3)/2}, \ldots, y_n$ and assign the label 1 to the vertices $z_{(n+1)/2}, z_{(n+3)/2}, \ldots, z_n$.

The Table 2 shows that this labeling is 3-total difference cordial labels

Table 2					
Values of n	$t_{df}(0)$	t _{df} (1)	$t_{df}(2)$		
n =0 (mod 3)	(11n-6)/3	(11n-6)/3	(11r-6)/3		
n =1 (mod 3)	(11 n- 8)/6	(11n-5)/6	(11n-5)/6		
n =2 (mod 3)	(11n+4)/3	(11n-4)/3	(11n-4)/3		

Theorem 4.5

 $S(K_{1,n})$ is 3-total difference cordial for all n.

Proof:

Let $V(S(K_{1,n})) = \{u, u_i, v_i : (1 \le i \le n)\}$ and $E(S(K_{1,n})) = \{uu_i, u_iv_i : (1 \le i \le n)\}$

Case (1) n = 3r

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

Assign the label 0 to the vertices u.Next assign the label 0 to the vertices u_1, u_2, \ldots, u_r . we now assign the label 1 to the vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Then assign the label 2 to the vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$.

Subcase (1) When r is odd.

Assign the label 0 to the vertices $v_1, v_2, \ldots, v_{(r-1)/2}$. Next assign the label 1 to the vertices $v_{(r+1)/2}, v_{(r+3)/2}, \ldots, v_r$ then assign the label 2 to the vertices $v_{r+1}, v_{r+2}, \ldots, v_{3r}$.

Subcase (2) When r is even.

Assign the label 0 to the vertices $v_1, v_2, \ldots, v_{r/2}$. Next assign the label 1 to the vertices $v_{(r+2)/2}, v_{(r+4)/2}, \ldots, v_r$ then assign the label 2 to the vertices $v_{r+1}, v_{r+2}, \ldots, v_{3r}$.

Case (2) n=3r+1

As in case 1 assign the label to the vertices $u_{,u_i}, v_i$ $(1 \le i \le n)$. Next assign the label 2,2 to the vertices u_{3r+1} and v_{3r+1}

Case (3) n=3r+2

As in case 1 and case 2 assign the label to the vertices $u_{,u_i,v_i}$ $(1 \le i \le n-1)$.Next assign the label 1,1 to the vertices u_{3r+2} and v_{3r+2} .

The table 3 shows that the vertex labeling is a 3-total difference cordial labeling.

Table 3					
Value of n	$t_{df}(0)$	$t_{df}(1)$	$t_{df}(2)$		
3r	4r	4r+1	4r		
3r+1	4r+2	4r+1	4r+2		
3r+2	4r+3	4r+3	4r+3		

Theorem 4.6

 $S(P_n \Theta K_1)$ is a 3-total difference cordial labeling

Proof:

Let P_n be the path $u_1 u_2 \dots u_n$. Let $V(P_n \Theta K_1) = V(P_n) \cup \{ v_i : 1 \le i \le n \}$. Let x_i be the vertex subdivided the edge $u_i u_{i+1}$ $(1 \le i \le n-1)$. Let y_i be the vertex which subdivided $u_i v_i (1 \le i \le n)$. Since $S(P_n \Theta K_1) \approx P_3$ and $S(P_2 \Theta K_1) \approx P_7$ the proof follow from theorem

Case (1) n = 3r, $r \in N$, $r \ge 1$

Assign the label 2 to the vertices u_1, u_2, \ldots, u_n , $x_1, x_2, \ldots, x_{n-1}$. Next assign the label 2 to the vertices $y_1 y_2 \ldots, y_{r+1}$ and $y_{r+2} y_{r+3} \ldots, y_{2r}$. Finally assign the label 1 to the remaining non-labelled vertices.

Case (2) n = 3r + 1, $r \in N$, $r \ge 1$

As in case (1) assign the label to the vertices u_i , v_i , y_i $(1 \le i \le n-1)$ and x_i $(1 \le i \le n-2)$. Next assign the label 2,2 and 1 respectively to the vertices x_{n-1} , u_n , y_n and v_n .

Case (3) n = 3r + 2, $r \in N$, $r \ge 1$

Assign the label to the vertices u_i , v_i , y_i $(1 \le i \le n-1)$ and x_i $(1 \le i \le n-2)$ as in case (1) .Next assign the label 2,2,1 and 2 to the vertices x_{n-1} , u_n , y_n and v_n respectively.

The table 4 given below shows that this labeling is 3-total difference cordial labels.

Table 4					
Value of n	t _{df} (0)	$t_{df}(1)$	t _{df} (2)		
3r	8r-1	8r-1	8r-1		
3r+1	8r+2	8r+2	8r+1		
3r+2	8r+4	8r+5	8r+4		

50

ISSN 2348 - 8034 Impact Factor- 5.070

REFERENCES

- 1. I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
- 2. J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- 3. F.Harary, Graph theory, Addision Wesley New Delhi (1969).
- 4. R.Ponraj, S. Yesu Doss Philip and R.Kala, k-total difference cordial of graphs (Submitted to the journal).
- 5. R.Ponraj, S. Yesu Doss Philip and R.Kala, 4-total difference cordial labeling of some of graphs (Submitted to the journal).

